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APPENDIX B

DERIVATION OF ALPHA SCANNING
EQUATIONS



Probability of Detecting Surface Contamination while Surveying
for Alpha-Emitting Radionuclides

For alpha survey instrumentation with a background around 1 to 3 counts per
minute (cpm), a single count will give a surveyor sufficient cause to stop and investigate
further. Assuming this to be true, the probability of detecting given levels of alpha-
emitting radionuclides can be calculated by use of Poisson summation statistics.

Experiments yielding numerical values of a random variable x where x represents
the number of outcomes occurring during a given time interval or a specified region in
space are often called Poisson experiments. The probability distribution of the Poisson
random variable X, representing the number of outcomes occurring in a given time
interval t, is given by the following:

e M B.1)
P(x; At) = T Xx=012,...

where
P(x; At) = probability of x number outcomes in time interval t,
A = average number of outcomes per unit time,
At = average value expected.

To define this distribution for an alpha scanning system, substitutions may be made
giving the following equation:

(B.2)
e Mt
Pvm = —
where
P(n; m) = probability of getting n counts when the average humber expected is

my
At average number of counts expected,
x average number of counts detected.

m=
n =
For a given detector size, source activity, and scanning rate, the probability of
getting n counts while passing over the source activity with the detector can be written
as follows:

- GEd - GEt
EW\ GEd |n GT\ GEt
60v 60

P(n;m) = =
n! n!

n (B.3)

where

source activity (dpm)

detector efficiency (41),

width of the detector in the direction of scan (cm),
d/v = dwell time over source (5),

scan speed (cm/s).

< O mE
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If we assume no background counts while passing over the source area, then the
probability of observing greater than or equal to 1 count, P(n = 1), within a time interval
tis this:

n-1
Pe)=1- 3 P3i,m,i=012...
i=0

(B.4)

If we assume further that a single count is sufficient to cause a surveyor to stop and
investigate further then the following applies:

- GEd (B.5)
Pe)=1- Pnh=0)=1-e%

Figures B.1 through B.4 show this function plotted for three different detector sizes
and four different source activity levels. Note that the source activity levels are given in
terms of absolute activity values (dpm), the probe sizes are the dimensions in the
direction of scanning, and the detection efficiency has been assumed to be 15%. If the
assumption is made that the areal activity is contained within a 100-cm2 area and that
the detector completely passes over the area either in one or multiple passes, then the
activity levels can be stated in areal units (dpm/100 cm?2).

Once a count has been recorded and the surveyor stops, the surveyor should wait a
sufficient period of time such that if the guideline level of contamination is present, then
the probability of getting another count is at least 90 %. This minimum time interval can
be calculated for given contamination guideline values by substituting the following
parameters into Eq. (B.5) and solving as follows:

P(=1)= 0.9
dv. =t
G = CA/100 where C = contamination guideline (dpm/100 cm?2)
A = detector area (cm?2)
giving
[ = 3800 (B.6)
CAE

Equation (B.3) can be solved to give the probability of getting any number of counts
while passing over the source area, although the solutions can become long and
complex. Many portable proportional counters have background count rates on the
order of 5 to 10 cpm and a single count will not give a surveyor cause to stop and
investigate further. If a surveyor did stop for every count, and subsequently waited a
sufficiently long period to make sure that the previous count either was or was not
caused by an elevated contamination level, then little or no progress would be made. For
these types of instruments, the surveyor usually will need to get at least 2 counts while
passing over the source area before stopping for further investigation. Assuming this to
be a valid assumption, Eq. (B.3) can be solved for n= 2 giving the following:

P=22)=1- PNh=0-PMn=1) (B.7)
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where

(GE+B) t (GE +B) t

=1-e
60

_ (GE +B) t
“1-e 60 G_'_ (GE+B)t)
60

GO (GE + B}t 60

P(n=2) = probability of getting 2 or more counts during the time interval t,
P(n=20) = probability of not getting any counts during the time interval t,
P(n=1) = probability of getting 1 count during the time interval t,

B background count rate (cpm).

All other variables are the same as in Eq. (B.3).

Figures 5 and 6 show this function plotted for three different probe sizes and two
different source activity levels. The same assumptions were made when calculating
these curves as were made for Figs. 1 through 4 except that the background was
assumed to be 7 cpm.
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Alpha Surveys (300 dpm/100 cm?2)
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Fig. B.1. Probability of detecting an alpha radiation activity
level of 5000 dpm at survey speeds of 0to 20 cm/sand at probe dia-
metersof 5-, 10-, and 15-cm (Sect. 5).
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Fig. B.2. Probability of detecting an alpha radiation activity
level of 1000 dpm/100 cm2 at survey speeds of 0 to 40 cm/s and at
probe diameters of 5-, 10-, and 15-cm (Sect. 5).
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Alpha Surveys (3000 dpm/100 cm2) Pg?zie
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Fig. B.3. Probability of detecting an alpha radiation activity
level of 3000 dpm/100 cm2 at survey speeds of 0 to 80 cm/s and at
probe diameters of 5-, 10-, and 15-cm (Sect. 5).

Alpha Surveys (5000 dpm/100 cm?2)

100%
80%. \\ ‘\\‘\‘
Q70% \g\
H
c
~60%
[a \\‘r\

50% \K&i

40%

e, || =
\\‘

T

30% . . . . . .
o 20 40 60 80 100 120

Survey Speed (cm/s)

Fig. B.4. Probability of detecting an alpha radiation activity
level of 5000 dpm/100 cm?2 at survey speeds of 0 to 120 cm/s and at
probe diameters of 5-, 10-, and 15-cm (Sect. 5).

DRAFT B-5 February 4, 1997



Alpha Surveys (300 dpm/100 cm2) Probe size
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Fig. B.5. Probability of detecting an alpha radiation activity
level of 300 dpm/100 cm2 at survey speeds of 0 to 8 cm/s and at
probe diameter s of 5-, 10-, and 15-cm (Sect. 5).
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Fig. B.6. Probability of detecting an alpha radiation activity
level of 1000 dpm/100 cm2 at survey speeds of 0 to 20 cm/s and at
probe diameters of 5-, 10-, and 15-cm (Sect. 5).
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APPENDIX C

NON-PARAMETRIC TEST WHEN THE BACKGROUND
VALUE ISNOT PRECISELY KNOWN
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NON-PARAMETRIC TEST WHEN BACKGROUND IS NOT
PRECISELY KNOWN

Tests when the background is not precisely known.

The tests in Sects. 7.6.2 and 7.6.3 are based on the assumption that “background” is
a known constant value that is subtracted from each measurement before the test is
conducted. These tests are not appropriate when the background value has uncertainty.
In this section, two tests are illustrated that are appropriate when the background mean
is not known with certainty. The first test, which is appropriate when the data are
normally distributed, is a modification of the test in Sect. 7.6.2 that uses Eq. (7.13). The
second test is a nonparametric procedure that can be used for any data distribution. This
latter test is preferred over the normal theory test unless the normality assumption is
clearly appropriate.

Tests based on normal distribution assumption

In this section a modified version of the test in Sect. 7.6.2 is presented that may be
used when the background value is a mean computed using n, background measure-
ments collected at random from a suitable background area during a suitable time
period. This test should be used only when the data are known with confidence to be
normally distributed.

The upper 95% confidence limit on the true mean for the survey unit is computed
using the following equation instead of Eq. (7.13).
(7.13b)

X + t0.95,deS(bar

.u(x,b

where

estimated upper 95% confidence limit on the true background-

corrected mean for the survey unit

x = mean of the ny background-corrected survey-unit measurements

mean of survey-unit measurements - mean of background
measurements

=

8

o
1]

Sxpar = (Vs + Vp)1/2
\/S = SSZ/nS
v, =s%/n
estimated variance of the survey-unit measurements (before
background is subtracted) computed using Eq. (7.12),
estimated variance of the background measurements computed
using Eq. (7.12),
number of survey-unit measurements,
number of background measurements, and

N
1]

> 5
(=8 w
I

DRAFT C-1 February 4, 1997



A
vZI(n—1) +v?/(n —-1)

Source: Snedecor and Cochran, p. 97, 1980.

This formula for df is appropriate when the variance of the ngsurvey-unit measure-
ments (computed before background is subtracted) does not equal the variance of the n,
background measurements. If the two variances are equal, then df = ng + n, — 2. This
latter formula for df is not recommended unless variances computed on the basis of 20 or
more measurements in both the survey unit and the background area indicate that it is
reasonable to assume equal variances.

Example 3

Suppose the following ng = 10 values represent the activity within 10 systematic
grid blocks across the survey unit being evaluated:

7.8 8.9
15 8.3
2.3 25
45 3.9
4.7 4.0
For these data: mean =6.19,
552 = 15.0966, and
Vs = 1.50966.

Also, suppose the following n, = 5 background measurements (pCi/Zg) have ben
taken at 5 random soil sampling locations in a suitable background area:

15 0.9
2.3 14
0.7

For these data:

background mean = 1.36
s = 0.388and,
vy, = 0.0776.
Therefore,
X = 6.19-1.36=4.83
Sxpar = (1.50966 + 0.0776)1/2
= 1.25986
and
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df = (150966+0.0776)
2.27904/9+0.00602/4

= 9.89

which is rounded down to 9. We find from Table 7.2 that
toogsg = 1.833.
Therefore, computing Eq. (7.13b):

1 =493 + 1833(1.25986)
" =714

Suppose the guideline value is 5 units above background. In that case, the survey
unit does not meet the guideline value because 7.14 >5.

Nonparametric test

In the preceding section, the test for compliance was conducted by comparing the
upper 95% confidence limit on the true background-corrected mean for the survey unit
[Eq. (7.13b)] with the guideline limit. That test requires the data to be normally distribut-
ed. In this section, a nonparametric (distribution-free) upper 95% confidence limit on the
parameter A is compared with the guideline value, where A is the amount that survey-
unit measurements exceed background, on the average. This latter method can be used
regardless of the type of data distribution.

The test procedure is as follows (an example is given below):

Step1l. Compute all ngn, differences between the ng survey-unit measurements and the
n, background measurements. That is, compute the ngn, differences.

Xji = Zj=Yi

where
z; = the jth survey unit measurement (not corrected for background)
yi = the ith background measurement

Step 2. Order (rank) the nsny differences (x;;) from smallest to largest. A computer can
be programmed to compute and rank the X;;.

Step 3. Compute the quantity C,
C = ngny/2-1.645[nsnp(ns + ny + 1)/12]1/2

and round this value to the nearest integer. [Note: the value 1.645 in this
equation will change if the confidence required in the decision is different than
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95%. The required constant is obtained from the standard normal distribution
table found in; e.g., Gilbert (1987, Table A.1).]

If both ng and ny, are not greater than 5, then the above formula for C should not be
used. Instead, compute C using the table look-up and computation procedure described
in Hollander and Wolfe (1973, pp. 78-79).

Step 4. Compute the quantity ngn, + 1 - C.
Step 5. Determine the upper 95% confidence limit on A. This upper limit is the (ngny, +
1 - C)th largest of the nsn, differences, counting from the smallest x;; measure-

ment. Denote this confidence limit by pig np.

Step 6. If Ly pp is less than the guideline value, then the survey unit being tested meets
the guideline at the 95% confidence level.

Example of nonparametric test

The data used in the preceding example are used here. There are
ns = 10 survey-unit measurements plotted, and
n, =5 background measurements, yielding
Xji =50 differences.

Step 1.  The 50 differences (x;;) are shown in the following table (e.g., 7.8 - 1.5 =6.3 is
the first entry).

Survey-unit measurements

Background
measurements 7.8 15 2.3 45 4.7 89 83 25 39 4.0
15 6.3 135 0.8 3.0 3.2 74 6.8 1.0 24 25
23 55 127 00 2.2 24 6.6 6.0 02 16 17
0.7 7.1 143 16 3.8 4.0 8.2 7.6 1.8 3.2 3.3
0.9 6.9 141 14 3.6 3.8 8.0 74 1.6 3.0 31
14 6.4 136 0.9 31 3.3 7.5 6.9 11 25 2.6
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Step 2. Listing the x;; values (from the table in Step 1) from smallest to largest gives:

Xji Rank | Xx;  Rank| Xj Rank Xji Rank Xji Rank
0.0 1 17 11 3.1 21 5.5 31 7.4 41
0.2 2 138 12 3.1 22 6.0 32 7.5 42
0.8 3 2.2 13 3.2 23 6.3 33 7.6 43
0.9 4 2.4 14 3.2 24 6.4 34 8.0 44
1.0 5 2.4 15 3.3 25 6.6 35 8.2 45
11 6 25 16 3.3 26 6.8 36 12.7 46
14 7 25 17 3.6 27 6.9 37 135 47
1.6 8 2.6 18 3.8 28 6.9 38 13.6 48
1.6 9 3.0 19 3.8 29 7.1 39 14.1 49
1.6 10 3.0 20 4.0 30 7.4 40 143 50

Step 3.  As both ngand ny are greater than or equal to 5, C is determined as follows:

10 « 5/2 - 1.645 (10 = 5= 16/12)1/2
11.57

which is rounded to 12.
Step4. ngny+1-C=51-12=309.

Step 5. From Step 4, the upper 95% confidence limit on A, p, np, is the 39th largest value
of x;;, which is 7.1 (from the table in Step 2).

Step 6. Compare Ly np to the guideline value. From Step 5, g np = 7.1. Suppose the
guideline value is 5 units above background. In that case, the survey unit does
not meet the guideline value because 7.1 >5.

For example, the nonparametric 95% upper confidence limit on A (7.1) is almost
identical to the 95% upper confidence limit on the background-corrected mean (7.14)
obtained in the previous example. Hence, both tests indicated the survey unit does not
meet the guideline value of 5. However, both tests will not always give the same
conclusion. Preference should be given to results obtained using the nonparametric limit
(Ha,np) because it does not require the data to be normally distributed. Among the four
tests described in Sects. 7.6.2 and 7.6.3 the test based on pg,p, is the most generally
applicable because it takes into account variability among both the background and
survey-unit measurements and it does not require the data to be normally distributed.
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Note that an easily computed estimate of A (the amount that survey-unit measure-
ments exceed background on the average) is the sample median of the ng n, values of x;;.
If ngnyis an even number, then the sample median is the arithmetic mean of the (n
ny/2)th and the [( ngny/2) +1]th largest values of x;;. If ngny is an odd number, then the
sample median is just the [(ngny/2) + 1]th largest value. In the example above, ngny, = 50.
Hence, the sample median is the arithmetic mean of the 25th and 26th largest values of
X;i, or 3.3 See Hollander and Wolfe (1973, pp. 75-78) for further discussion.
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